23 research outputs found

    High-Purity Preparation of a Large DNA Dumbbell

    No full text

    Binding of hydrogen-Citrate to photoactive yellow Protein is affected by the structural changes related to signaling state formation

    No full text
    The tricarboxylic acid citric acid is a key intermediary metabolite in organisms from all domains of the tree of life. Surprisingly, this metabolite specifically interacts with the light-induced signaling state of the photoactive yellow protein (PYP), such that, at 30 mM, it retards recovery of this state to the stable ground state of the protein with up to 30%, in the range from pH 4.5 to pH 7. We have performed a detailed UV/ vis spectroscopic study of the recovery of the signaling state of wild type (WT) PYP and two mutants, H108F and Δ25-PYP, derived from this protein, as a function of pH and the concentration of citric acid. This revealed that it is the dianionic form of citric acid that binds to the pB state of PYP. Its binding site is located in between the N-terminal cap and central β-sheet of PYP, which is accessible only in the signaling state of the protein. The obtained results show how changes in the distribution of subspecies of the signaling state of PYP influence the rate of ground state recovery

    Multiple steps during the formation of beta-lactoglobulin fibrils

    No full text
    In this study, the heat induced fibrilar aggregation of the whey protein beta-lactoglobulin is investigated at low pH and at low ionic strength. Under these circumstances, tapping mode atomic force microscopy results indicate that the fibrils formed have a periodic structure with a period of about 25 nm and a thickness of one or two protein monomers. Fibril formation is followed in situ using light scattering and proton NMR techniques. The dynamic light scattering results show that the fibrils that form after short heating periods (up to a few hours) disintegrate upon slow cooling, whereas fibrils that form during long heating periods do not disintegrate upon subsequent slow cooling. The NMR results show that even after prolonged heating an appreciable fraction of the protein molecules is incorporated into fibrils only when the beta-lactoglobulin concentration is above approximately 2.5 wt %. The data imply multiple steps during the heat induced formation of beta-lactoglobulin fibrils at low pH and at low ionic strength: (partly) denatured protein monomers are either incorporated into fibrils or form instead a low molecular weight complex that is incapable of forming fibrils. Fibril formation itself also involves (at least) two steps: the reversible formation of linear aggregates, followed by a slow process of "consolidation" after which the fibrils no longer disintegrate upon slow cooling

    Synthesis of Constrained Tetracyclic Peptides by Consecutive CEPS, CLIPS, and Oxime Ligation

    Get PDF
    In Nature, multicyclic peptides constitute a versatile molecule class with various biological functions. For their pharmaceutical exploitation, chemical methodologies that enable selective consecutive macrocyclizations are required. We disclose a combination of enzymatic macrocyclization, CLIPS alkylation, and oxime ligation to prepare tetracyclic peptides. Five new small molecular scaffolds and differently sized model peptides featuring noncanonical amino acids were synthesized. Enzymatic macrocyclization, followed by one-pot scaffold-assisted cyclizations, yielded 21 tetracyclic peptides in a facile and robust manner

    Multiple steps during the formation of beta-lactoglobulin fibrils

    No full text
    In this study, the heat induced fibrilar aggregation of the whey protein beta-lactoglobulin is investigated at low pH and at low ionic strength. Under these circumstances, tapping mode atomic force microscopy results indicate that the fibrils formed have a periodic structure with a period of about 25 nm and a thickness of one or two protein monomers. Fibril formation is followed in situ using light scattering and proton NMR techniques. The dynamic light scattering results show that the fibrils that form after short heating periods (up to a few hours) disintegrate upon slow cooling, whereas fibrils that form during long heating periods do not disintegrate upon subsequent slow cooling. The NMR results show that even after prolonged heating an appreciable fraction of the protein molecules is incorporated into fibrils only when the beta-lactoglobulin concentration is above approximately 2.5 wt %. The data imply multiple steps during the heat induced formation of beta-lactoglobulin fibrils at low pH and at low ionic strength: (partly) denatured protein monomers are either incorporated into fibrils or form instead a low molecular weight complex that is incapable of forming fibrils. Fibril formation itself also involves (at least) two steps: the reversible formation of linear aggregates, followed by a slow process of "consolidation" after which the fibrils no longer disintegrate upon slow cooling

    Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study

    No full text
    Object Proton resonance frequency shift (PRFS)-based MR thermometry (MRT) is hampered by heat-induced susceptibility changes when applied in tissues containing fat, e.g., the human breast. In order to assess the impact of fat susceptibility changes on PRFS-based MRT during thermal therapy in the human breast, reliable knowledge of the temperature dependence of the magnetic volume susceptibility of fat, dχfat/dT, is a prerequisite. In this work we have measured dχfat/dT of human breast fat tissue, using a double-reference method to ensure invariance to temperature-induced changes in the proton electron screening constant. Materials and methods Ex vivo measurements were taken on a 14.1 T five mm narrow bore NMR spectrometer. Breast fat tissue samples were collected from six subjects, directly postmortem. The susceptibility was measured over a temperature range from 24°C to 65°C. Results A linear behavior of the susceptibility over temperature was observed for all samples. The resulting dχfat/dT of human breast fat ranged between 0.0039 and 0.0076 ppm/°C. Conclusion It is concluded that the impact of heat-induced susceptibility changes of fat during thermal therapy in the breast may not be neglected

    Direct structural comparison of a rigid cyclic peptidic scaffold using crystallography and NMR in strained PH polymer gels

    No full text
    A small series of biaryl ether containing cyclic peptidic scaffolds was synthesized and cyclized by an S<sub>N</sub>Ar reaction. The structure of one rigid scaffold was solved by X-ray crystallography and also determined in solution by NMR spectroscopy. Molecular alignment of the peptidic scaffold in strained PH polymer gels in [D<sub>6</sub>]DMSO was applied to extract residual dipolar couplings (RDCs). The RDC values were used to obtain a structure that was compared to the crystal structure. Good correlation was obtained, indicating that the RDC method represents a very precise structure determination method for small organic molecules in solution
    corecore